

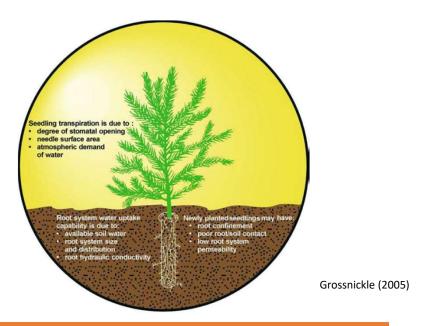
Physiological Impacts of Drought Conditioning Practices on Loblolly Pine

Tom Stokes

Southern Forest Nursery Management Cooperative 2022 Contact Meeting

1

Introduction


- Seedlings grown in nursery under optimal growing condition
 - Irrigation
 - Fertilization
 - · Competition control
 - Etc.
- Outplanting in harsh environmental conditions
 - Physiology
 - Morphology
 - Anatomy

Southern Forest Nursery Management Cooperative 2022 Contact Meeting

- Surviving Drought
 - Water loss through transpiration
 - Root water uptake capability
 - Overcome newly planted conditions

outhern Forest Nursery Management Cooperative 2022 Contact Meeting

3

Introduction

- Drought conditioning seedlings
 - To intentionally limit irrigation during the growth phase in a nursery
 - This practice began in the 1st half of the 20th century in an arid region in the pacific northwest.
 - Became more prevalent after a graph was published in 1974 indicating greater survival of drought stressed seedlings.
 - Some studies have shown greater survival with drought conditioned seedlings.
 - However, many recent studies have shown that survival does not increase with reductions in irrigation in many bareroot Pinus species.

Southern Forest Nursery Management 2022 Contact Meeting

- · Benefits of Drought Conditioning
 - · Increased root to shoot ratio
 - · Decrease in succulent foliage
 - · Increase in soluble sugars
- · Risks of Drought Conditioning
 - · Depletion of stored carbohydrates
 - · Increase in cavitated xylem conduits
 - · Predispose to future stress events (legacy effects).

Southern Forest Nursery Management Cooperative 2022 Contact Meeting

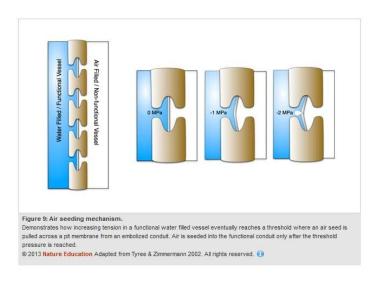
5

Introduction

- To understand the physiological effects of drought conditioning we must:
 - · Understand how water moves through a plant
 - · How cavitation and embolisms occur
 - · How embolisms spread
 - How embolized xylem MAY be repaired

Southern Forest Nursery Management Cooperative 2022 Contact Meeting

- How water moves through a tree.
 - Transpiration
 - Water moves out of stomata
 - Water moves down concentration gradient which creates negative pressure
 - Water is replaced by water from xylem
 - Cohesion and adhesion in the xylem.
 - Xylem water column is maintained by the cohesion of water and adhesion to the cell walls
 - Water uptake from soil
 - Water is pulled from root cortex into xylem cells
 - Water is pulled from the soil into the roots



outhern Forest Nursery Management Cooperative 2022 Contact Meeting

7

Introduction

- · How embolisms spread
 - Air seeding
 - Air bubble moves from air filled xylem into water filled xylem across the pit membrane when a threshold pressure is reached

McElrone et al. (2013)

Southern Forest Nursery Management Cooperative Contact Meeting

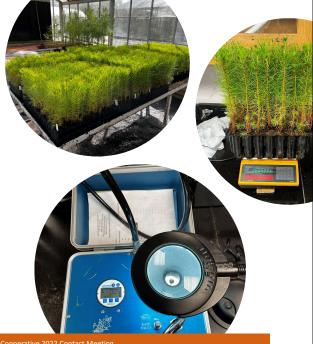
- · Embolism repair
 - · Some species have shown the ability to rapidly repair embolized xylem conduits
 - For refilling of xylem conduits either:
 - · Freeze-thaw cycles -which will dissolve the gas back into water, or
 - Positive root pressure from movement of solutes to the roots.
 - Several recent studies, especially with conifers, have shown a lack of a mechanism to refill embolized xylem conduits.
 - New xylem will have to be made significant carbon cost to the plant.

outhern Forest Nursery Management Cooperative 2022 Contact Meeting

9

Introduction

· Vulnerability to embolism within a plant


Roots Needles Branches Stems

outhern Forest Nursery Management Cooperative 2022 Contact Meeting

Methods

- Treatment Phase
 - Randomized complete block
 - 4 replications of 3 treatments (3 genetic families)
 - Treatments
 - Control No drought conditioning
 - DCWP Drought conditioning based on 3 progressive steps of pre-dawn water potentials
 - DCCW Drought conditioning based on 3 progressive steps of container weights

Southern Forest Nursery Management Cooperative 2022 Contact Meeting

Methods

- Drought Phase
 - Randomized complete block
 - 4 replications of 3 treatments (3 genetic families)
 - · Outplanted in outdoor stress facility
 - Drought
 - All trees were watered daily for 3 weeks after outplanting
 - Watering was cut to every three days during the 4th week after outplanting
 - Water was withheld for 29 days starting the 5th week after outplanting

Southern Forest Nursery Management Cooperative 2022 Contact Meeting

13

Methods

- Recovery Phase
 - After 29 days without water, seedlings will be kept well watered during the growing season

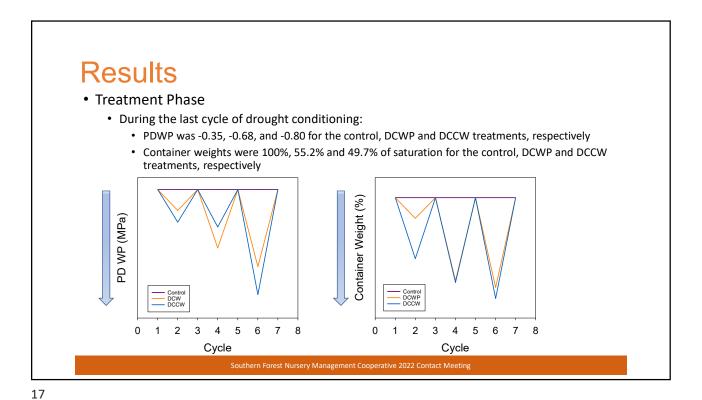
Southern Forest Nursery Management Cooperative 2022 Contact Meeting

Methods

- Measurements
 - Treatment Phase
 - Initial RCD and Height
 - Pre-dawn water potential
 - Container weights
 - End of treatment stem embolism
 - Drought Phase
 - Initial outplanting RCD and Height
 - Soil moisture
 - Chlorophyll fluorescence
 - Beginning and ending stem embolism
 - Recovery Phase
 - Final RCD and height
 - Stem embolism
 - survival

outhern Forest Nursery Management Cooperative 2022 Contact Meeting

15


Results

- RCD and Height
 - There was a measurement date main effect on both RCD and height
 - Both RCD and height significantly increased from before treatment phase to being outplanted
 - There were no treatment differences in RCD and Height

Effect RCD HEIGHT
Date < 0.001 < 0.001
TRT 0.462 0.808
Date*Trt 0.573 0.088

Date	RCD (mm)	Height (cm)
Before Trt	3.3	27.4
Before Outplanting	3.76	33.9

Southern Forest Nursery Management Cooperative 2022 Contact Meeting

40 Embolized Xylem (%) Effect Control
DCWP
DCCW Embolized Xylem (%) Results Date 0.019 30 < 0.001 Trt 0.002 Date*trt 20 Stem Embolism • There was a date*trt interaction with 10 percent stem embolism • Both, after drought conditioning and before outplanting resulted in DCCW 0 with increased percent embolized AC во AD xylem followed by DCWP then Control Measurement · No significant differences after the Control DCWP DCCW drought between treatments with average percent embolized xylem of Before Outplanting 25.5% 0 After Drought

Discussion

- Three different levels of drought conditioning were evident in terms of water stress in both predawn water potentials and stem embolisms
- During the drought phase, seedlings with no drought conditioning significantly increased in percent xylem embolized while both the DCWP and DCCW treatments had little change
 - Loblolly pine has been shown to have tight stomatal control over water stress
 - Since DCWP and DCCW seedlings were already stressed when the drought phase began, these seedlings probably shut down (no carbon gain) to avoid further water stress
 - Control seedlings were not stressed at the beginning of drought, so they probably kept higher levels of photosynthesis which resulted in increased embolisms.
 - End of growing season growth measurement should help explain this.

Southern Forest Nursery Management Cooperative 2022 Contact Meeting

19

In Progess

- · Second drought?
 - We will consider a late season second drought when evaporative demand is high to determine legacy effects
- Recovery
 - We will measure end of year growth to determine drought conditioning success on seedling performance
 - We will measure end of year embolisms to determine if loblolly pine can refill embolized xylem
 - · We will look at survival

Southern Forest Nursery Management Cooperative 2022 Contact Meeting

